Классификация систем отопления

Содержание

Газовик

Ознакомление с бытовым и производственным газовым оборудованием, системами отопления и водоснабжения

Системы отопления и их виды

Системы отопления

Системы отопления и их виды. Каким бы ни было здание, большим или маленьким, чтобы в нем было уютно и тепло круглый год, необходимо надежное и удобное отопление. С развитием строительства в последние годы, наряду с поиском архитектурно – планировочных решений строений, на первый план выходят требования по обеспечению комфорта находящихся в них людей.

Одной из основных задач в этой области прежде всего являются системы отопления, отвечающие современным требованиям.

Под современными требованиями подразумевается:

  1. Высокая эффективность системы.
  2. Экономичность.
  3. Возможность автоматического регулирования и создания максимально комфортных условий проживания.
  4. Возможность получения необходимого количества горячей воды.

Отопительные системы разрешают одну из задач по созданию искусственного климата в помещениях. Они служат для поддержания заданной температуры воздуха во внутренних помещениях зданий в холодное время года.

Системы отопления могут различаться в зависимости от разных критериев. Существуют такие основные виды систем отопления, как: воздушное отопление, электрическое отопление, водяное отопление, паровое, и другие. Классификация систем отопления включает множество видов. Рассмотрим основные из них, а также проведем сравнение видов топлива для отопления.

Общие понятия системы отопления

Система отопления — это совокупность технических элементов, предназначенных для получения, переноса и передачи во все обогреваемые помещения количества теплоты, необходимого для поддержания температуры на заданном уровне.

Основные конструктивные элементы системы отопления:

  1. теплоисточник (теплогенератор при местном или теплообменник при централизованном теплоснабжении) — элемент для получения теплоты;
  2. теплопроводы — элемент для переноса теплоты от теплоисточника к отопительным приборам;
  3. отопительные приборы — элемент для передачи теплоты в помещение.

Классификация систем отопления

Системы отопления можно разделить:

  • По радиусу действия – местные и центральные;
  • По типу источника нагрева – газовые, мазутные, электрические, пеллетные, дровяные, угольные, дизельные, торфяные, солнечные, геотермальные.
  • По виду циркуляции теплоносителя – с естественной и искусственной (механической, с использованием насосов);
  • По типу теплоносителя – воздушные, водяные, паровые, комбинированные;
  • По способу разводки – с верхней, нижней, комбинированной, горизонтальной, вертикальной;
  • По способу присоединения приборов – однотрубные, двухтрубные, трёхтрубные, четырёхтрубные, комбинированные;

Однотрубная система

Однотрубная. Устроена следующим образом: отопительные приборы одного стояка подключены последовательно, т.е. теплоноситель, постепенно охлаждаясь, проходит стояк из прибора в прибор. При этом, логично, в последний из них он попадёт значительно менее горячим, чем в первый. Эта разница компенсируется разной поверхностью теплоотдачи приборов (например, различное количество секций для чугунных радиаторов) – меньшей в начале и большей в конце. Также может быть предусмотрен обвязка отопительного прибора с использованием байпаса, или короткозамыкающего участка.

Системы отопления

Двухтрубная система

Двухтрубная. В этом случае отопительные приборы как правило подключены к стояку параллельно, что позволяет сохранять одинаковую температуру теплоносителя на каждом. Такие системы более металлоёмки и требуют балансировки каждого прибора отдельно.

  • По типу применяемых приборов – конвективные, лучистые, конвективно-лучистые;
  • По ходу движения теплоносителя в магистральных трубопроводах – тупиковые и попутные;
  • По гидравлическим режимам – с постоянным и изменяемым режимом;
  • По режиму работы – постоянно работающие на протяжении отопительного периода и периодические (в том числе и аккумуляционные) системы отопления.

Все эти признаки системы в реальности, как правило, смешиваются – например, водяная система с нижней разводкой, тупиковая, с изменяемой гидравликой, с нагревательными приборами – конвекторами, электрическая – прямого действия и воздушная или водяная системы отопления.

Отопительное устройство помещений может быть конвективным и лучистым.

К конвективному относят отопление, при котором температура воздуха поддерживается на более высоком уровне, чем радиационная температура помещения, понимая под радиационной усредненную температуру поверхностей, обращенных в помещение, вычисленную относительно человека, находящегося в середине помещения. Это широко распространенный способ отопления.

Лучистым считают отопление, при котором радиационная температура помещения превышает температуру воздуха. Лучистое отопление при несколько пониженной температуре воздуха (по сравнению с конвективным отоплением) более благоприятно для самочувствия людей в помещениях (например, до 18-20 вместо 20-22 в помещениях гражданских зданий).

Конвективное или лучистое отопление помещений осуществляется прежде всего специальной технической установкой, называемой системой отопления. Система отопления – это совокупность конструктивных элементов со связями между ними, предназначенных для получения, переноса и передачи необходимого количества теплоты в обогреваемые помещения.

Основной отопительный элемент системы отопления

  • теплоисточник (теплообменник при централизованном теплоснабжении) – элемент для получения теплоты;
  • теплопроводы – элемент для переноса теплоты от теплоисточника к отопительным приборам;
  • отопительные приборы – элемент для теплопередачи в помещения.

Перенос по теплопроводам может осуществляться с помощью жидкой или газообразной рабочей среды. Жидкая (вода и другие жидкости) или газообразная (пар, воздух, газ) среда, перемещающаяся в системе отопления, называется теплоносителем. Система отопления для выполнения возложенной на нее задачи должна обладать определенной тепловой мощностью. Расчетная тепловая мощность системы выявляется в результате составления теплового баланса в обогреваемых помещениях при температуре наружного воздуха, называемой расчетной.

Системы отопления

Расчетная тепловая мощность в течение отопительного сезона должна использоваться частично в зависимости от изменения теплопотерь помещений при текущем значении температуры наружного воздуха и только при – полностью.

Текущие (сокращенные) теплозатраты на отопление как правило имеют место в течение почти всего времени отопительного сезона. Поэтому теплоперенос к отопительным приборам должен изменяться в широких пределах.

Этого можно достичь путем изменения (регулирования) температуры и количества перемещающегося в системе отопления теплоносителя. Регулироваться должны также затраты топлива в теплоисточнике.

Требования предъявляемые к системе отопления

Их можно разделить на пять групп:

  1. санитарно-гигиенические – поддержание заданной температуры воздуха и внутренней поверхности ограждении во времени, в плане и по высоте помещений при допустимой подвижности воздуха; ограничение температуры поверхности отопительных приборов;
  2. экономические – невысокие капитальные вложения с минимальным расходом металла; экономный расход тепловой энергии при эксплуатации;
  3. архитектурно-строительные – соответствие интерьеру помещений, компактность, увязка со строительными конструкциями; согласование со сроком строительства зданий;
  4. производственно-монтажные – минимальное число унифицированных узлов и деталей, механизация их изготовления; сокращение трудовых затрат при монтаже;
  5. эксплуатационные – эффективность действия в течение всего периода работы, связанная с надежностью и техническим совершенством системы.

Деление требований на пять групп условно, так как в них входят требования, относящиеся как к периоду проектирования и строительства, так и эксплуатации зданий.

Наиболее важны санитарно-гигиенические и эксплуатационные требования, которые обусловливаются необходимостью поддерживать заданную температуру в помещениях в течение отопительного сезона и всего срока службы системы.

По виду основного (вторичного) теплоносителя местные и центральные системы отопления к примеру принято называть системами водяного, парового, воздушного, газового отопления.

В настоящее время в стране применяют главным образом центральные системы водяного и парового отопления, местные и центральные системы воздушного отопления, а также печное отопление. Приведем общую характеристику этих систем с детальной классификацией на основании рассмотренных свойств теплоносителей.

Элементы системы отопления

Отопительный прибор — устройство для обогрева помещения путём передачи теплоты от теплоносителя, поступающего от источника теплоты, в окружающую среду.

К отопительным приборам как к оборудованию, устанавливаемому непосредственно в обогреваемых помещениях, предъявляется ряд требований:

  1. санитарно-гигиенические — относительно пониженная температура поверхности; ограничение площади горизонтальной поверхности приборов и её гладкость для уменьшения отложения пыли; доступность и удобство очистки от пыли поверхности приборов и пространства вокруг них;
  2. теплотехнические — передача максимального теплового потока от теплоносителя в помещение через определённую площадь поверхности прибора при прочих равных условиях. Обеспечение надлежащего обогрева рабочей зоны помещения, управление теплоотдачей приборов;
  3. экономические — минимальная стоимость прибора; минимальный расход материала, идущего на изготовление прибора;
  4. архитектурно-строительные — соответствие внешнего вида прибора интерьеру помещений, компактность;
  5. производственно-монтажные — механизация изготовления и монтажа приборов для повышения производительности труда; достаточная механическая прочность приборов.

Все отопительные приборы по преобладающему способу теплоотдачи делятся на три группы:

  1. радиационные приборы, передающие излучением не менее 50 % общего теплового потока; (потолочные отопительные панели и излучатели);
  2. конвективно-радиационные приборы, передающие конвекцией от 50 до 75 % общего теплового потока; (радиаторы секционные и панельные, гладкотрубные приборы, напольные отопительные панели);
  3. конвективные приборы, передающие конвекцией не менее 75 % общего теплового потока (конвекторы и ребристые трубы).

По используемому материалу:

  1. металлические (из серого чугуна, стали, алюминия, биметаллические);
    • комбинированные (используется теплопроводный материал — бетон,
    • керамика — в который заделывают стальные или чугунные греющие элементы);
  2. неметаллические (бетонные панельные радиаторы, потолочные и напольные панели).

По величине тепловой инерции:

  1. малой инерции (имеют небольшую массу материала и вмещаемой воды; теплоотдача быстро изменяется при изменении расхода подаваемого теплоносителя);
  2. большой инерции (массивные приборы, вмещающие большое количество воды: теплоотдача изменяется сравнительно медленно).

Отопительный элемент бывает:

  1. Алюминиевые, биметаллические и стальные радиаторы.
    • Самая главная характеристика отопительного прибора – теплоотдача, то есть то количество тепла, которое должно быть в 1 час на 1 кв.метр поверхности нагрева. Лучшим считается прибор, у которого выше данный показатель. Теплоотдача прежде всего зависит от многих факторов; теплопередающей среды, конструкции прибора отопления, способа установки, цвета окраски, скорости движения воды, скорости омывания прибора воздухом. Все приборы системы водяного отопления по конструкции подразделяются; на панельные, секционные, конвекторы и колончатые алюминиевые радиаторы или стальные.
  2. Панельные приборы отопления
    • Производятся из холоднокатаной высокачественной стали. Они состоят из одной, двух или трех плоских панелей. Внутри которых находится теплоноситель, а также у них есть ребристые поверхности, которые нагреваются от панелей. Нагрев помещения происходит быстрее, чем при использовании секционных радиаторов.
  3. Секционные приборы водяного отопления
    • Изготавливаются из стали, чугуна или алюминия. Они используют конвективный метод обогрева помещения, то есть они отдают тепло за счет циркуляции воздуха через них. Воздух проходит сквозь конвектор сверху вниз и нагревается от большого количества теплых поверхностей.
  4. Конвекторы
    • Обеспечивают циркуляционное движение воздуха в помещении, когда теплый воздух поднимается вверх, а холодный воздух в результате опускается вниз и, проходя сквозь конвектор, обратно нагревается.
  5. Алюминиевые радиаторы
    • Алюминиевые радиаторы водяного отопления отличаются небольшим весом и обладают хорошей теплоотдачей, эстетичны, но дорого стоят. Часто не выдерживают высокого давления в системе. Их достоинство – они нагревают помещение намного быстрее, чем это делают чугунные радиаторы.
  6. Биметаллические радиаторы
    • Биметаллические радиаторы водяного отопления состоят из алюминиевого корпуса и стальных труб, по которым движется теплоноситель. Их главное преимущество перед другими радиаторами – прочность. Их рабочее давление достигает до 40 атм. В то время как алюминиевые радиаторы водяного отопления работают при давлении в 16 атм. К сожалению, на данный момент на европейском рынке очень редко можно встретить в продаже данные биметаллические радиаторы водяного отопления.
  7. Чугунные радиаторы колончатого типа – это практически самый распространенный вид радиаторов. Они долговечны к тому же практичны в использовании.

Система водяного отопления

(Водяной воздушный отопление радиационный)

Самое распространенное в России отопление – водяное. В этом случае тепло передается в помещения горячей водой, содержащейся в приборах отопления. Наиболее привычный способ – водяное отопление с естественной циркуляцией воды. Принцип прост: вода перемещается из-за разницы температур и плотности. Более легкая горячая вода поднимается от отопительного котла вверх. Постепенно остывая в трубопроводе и отопительных приборах, тяжелеет и стремится вниз, обратно к котлу. Основное преимущество такой системы – независимость от электроснабжения и достаточно простой монтаж. Многие российские умельцы справляются с ее установкой самостоятельно. Кроме того, небольшое циркуляционное давление делает ее безопасной. Но для работы системы требуются трубы увеличенного диаметра. При этом пониженная теплоотдача, ограниченный радиус действия и большое количество времени, требуемое на запуск, делает ее несовершенной и подходящей только для небольших домов.

Более современны и надежны схемы отопления с принудительной циркуляцией. Здесь вода приводится в движение за счет работы циркуляционного насоса. Он устанавливается на трубопроводе, подводящем воду к теплогенератору, и задает скорость потоку. см. Установка насоса

Быстрый запуск системы и, как следствие, быстрый прогрев помещений – достоинство насосной системы. К недостаткам относится то, что при отключении электропитания она не работает. В результате это может привести к замораживанию и разгерметизации системы. Сердце системы водяного отопления – источник теплоснабжения, теплогенератор. Именно он создает энергию, обеспечивающую тепло. Такое сердце – котлы на разных видах топлива. Наиболее популярны газовые котлы. Другой вариант – котел на дизельном топливе. Электрические котлы выгодно отличаются отсутствием открытого пламени и продуктов горения. Твердотопливные котлы не удобны в эксплуатации из-за необходимости частой топки. Для этого надо иметь десятки кубометров топлива, площади для его хранения. А добавьте сюда трудозатраты на загрузку и заготовку! Кроме того, режим теплоотдачи твердотопливного котла цикличен. И температура воздуха в отапливаемых помещениях заметно колеблется в течение суток. Место для хранения запасов топлива также необходимо и для котлов на жидком топливе. см. Установка теплогенератора

Виды водяного отопления

Системы отопления по способу создания циркуляции делятся на; с естественной циркуляцией (гравитационные) и с механическим побуждением циркуляции воды при помощи насосов. Принципиальная схема системы водяного отопления с естественной циркуляцией теплоносителя показана ниже на рисунке. Вода от котла к приборам теплообменника и обратно двигается под действием гидростатического напора. Возникающего благодаря различной плотности охлажденной и нагретой жидкости (теплоносителя).

Какая же сила заставляет воду циркулировать в системе, т.е. двигаться по трубам из котла в нагревательные приборы и обратно в котел? Эта сила как правило возникает при нагревании воды в котле и охлаждении ее в нагревательных приборах. Вода, нагретая в котле (1), как более легкая, поднимается по главному подающему стояку вверх. Из стояка она поступает в подающий трубопровод (4), а из него через подающие стояки – в нагревательные приборы (2). Здесь вода остывает и поэтому становится более тяжелой. Например, плотность воды при 400С составляет 992,24 кг/м3, при 70 °С – 977,8 кг/м3, при 95°С -961,9 кг/м3. Охлажденная вода через обратные трубопровод 5 линию опускается вниз и своим весом вытесняет нагретую воду из котла вверх – в главный подающий стояк.

Описанный процесс непрерывно повторяется и в результате происходит постоянная циркуляция воды в системе.

Системы отопления

Сила циркуляции, или, как принято говорить, циркуляционное давление, зависит от разности весов столба горячей и столба охлажденной (обратной) воды. Следовательно, она зависит от разности температур горячей и обратной воды. Кроме того, циркуляционное давление обуславливается ещё высотой расположения нагревательного прибора над котлом; чем выше расположен прибор, тем больше для него циркуляционное давление.

В системах водяного отопления наибольшая температура горячей воды обычно равна 95°С, а охлажденной – 70°С. Если пренебречь охлаждением воды в трубах, то можно считать, что в нагревательный прибор вода поступает с температурой 95°С, а уходит из него с температурой 70°С. При этом условии определим сначала для верхнего, а затем для нижнего нагревательного прибора циркуляционное давление, под влиянием которого происходит через них движение воды.

По температуре теплоносителя различаются системы низкотемпературные с предельной температурой горячей воды tГ >100°С. Максимальное значение температуры воды ограничено в настоящее время 150 СС.

По положению труб, объединяющих отопительные приборы по вертикали или горизонтали, системы делятся на вертикальные и горизонтальные.

В зависимости от схемы соединения труб с отопительными приборами бывают системы однотрубные и двухтрубные. В каждом стояке или ветви однотрубной системы приборы соединяются одной трубой, и вода протекает последовательно через все приборы. Если каждый отопительный прибор, установленный в помещении, разделен на две равные части («а» и «б»). В которых вода движется в противоположных направлениях и теплоноситель последовательно проходит сначала через все части «а», а затем через все части «б». То такая однотрубная система носит название бифилярной (двухпоточной).

Главное устройство такой системы, как одноконтурная система отопления, – это котел. Чаще всего топливом для котла является газ, но иногда может применяться и топливо твердых сортов. Такой вариант лучше всего подходит для таких домов, где централизованная газовая система отсутствует.

Элементами для отопления служат радиаторы. Если раньше в домах были установлены радиаторы из такого материала, как чугун. То сейчас большей популярностью пользуются биметаллические батареи. Чугунные радиаторы имеют несколько больших недостатков. Во-первых, они не всегда соответствуют всем требованиям технического характера. Во-вторых, обогрев помещения проходит не на самом высоком уровне. Биметаллические радиаторы выглядят более эстетично и лучше обогревают помещение.

Системы отопления

В двухтрубной системе приборы отдельно присоединяются к двум трубам – подающей и обратной. Вода протекает через каждый прибор независимо от других приборов.

В двухтрубных системах отопления нагревательные приборы, расположенные на одном уровне с котлом. Если ниже его, работать не будут или же будут очень слабо прогреваться. Для указанных систем практикой установлено наименьшее расстояние между центром нагревательных приборов нижнего этажа и центром котла в 3 метра. В связи с этим котельные для систем отопления должны иметь достаточное заглубление. Указанного недостатка лишены однотрубные системы отопления. В этом случае гидростатический напор, заставляющий циркулировать воду в системе, будет образовываться из-за охлаждения воды в трубопроводах, подводящих нагретую воду к нагревательным приборам, а также отводящих охлажденную воду от приборов к котлу.

Системы отопления

Это охлаждение полезно, во-первых, для создания гидростатического напора. Во-вторых, для дополнительного, обогрева помещения, поэтому указанные трубопроводы прокладывают открыто и не изолируют. Напротив, охлаждение воды в главном стояке (подъемном трубопроводе) вредно. Ибо приводит к снижению температуры и увеличению плотности и, как следствие, к уменьшению гидростатического напора. В связи с этим подъемный стояк от котла необходимо тщательно теплоизолировать.

Количество тепла, отдаваемого помещению нагревательными приборами, как правило зависит от количества поступающей в прибор воды и ее температуры. В свою очередь, количество воды, которое может быть пропущено через трубопровод к прибору, зависит от циркуляционного давления заставляющего воду двигаться по трубе. Чем больше циркуляционное давление, тем меньше может быть диаметр трубы для пропуска определенного количества воды. И наоборот чем меньше циркуляционное давление, тем больше должен быть диаметр трубы.

Но для нормального действия системы отопления требуется еще одно условие; чтобы циркуляционное давление было достаточным для преодоления всех сопротивлений. Которые встречает движущаяся в этой системе вода. Известно, что вода при своем движении в системе отопления встречает сопротивления, вызываемые трением воды о стенки труб, а кроме них, еще и местные сопротивления, к которым относятся отводы, тройники, крестовины, краны, нагревательные приборы и котлы.

Сопротивление вследствие трения зависит от диаметра и длины трубопровода, а также от скорости движения воды; (если скорость увеличится в два раза, то сопротивление – в четыре раза, т.е. в квадратичной зависимости). Чем меньше диаметр и больше длина трубопровода и чем выше скорость воды, тем больше сопротивление создается на пути воды и наоборот. В схеме отопления, изображенной снизу, имеется два кольца; одно, проходящее через ближайший к котлу стояк, и другое, которое проходит через дальний стояк. Так как первое кольцо короче второго. То при одинаковой в обеих кольцах тепловой нагрузке и одинаковых диаметров труб будет проходить по короткому кольцу больше воды, чем требуется по расчету. В результате по длинному кольцу будет проходить меньше воды, чем следует по расчету. Чтобы этого избежать необходимо для дальнего стояка применять трубы большего диаметра, чем для ближайшего стояка, и таким образом уравнять сопротивления в обеих кольцах. При большей длине труб сопротивление возрастает, с увеличением диаметра труб оно падает.

Системы отопления

Величина местного сопротивления зависит. Во-первых, от скорости воды, следовательно, и от изменения сечения, вызывающего изменение этой скорости; (например, в кранах, нагревательных приборах, котлах и т.д.). Во-вторых, от изменения направления, по которому движется вода, и изменения количества воды; (например, в отводах, тройниках, крестовинах, вентилях).

По принципу действия система отопления с нижней разводкой не отличается от системы с верхней разводкой. И тут, и там циркуляция создается потому, что горячая вода, как более легкая, вытесняется обратной водой вверх по стоякам; остывая в нагревательных приборах, эта вода опускается вниз через обратные стояки и снова поступает в котел.

В системах с естественным побуждением в зданиях небольшой этажности величина циркуляционного давления невелика. И поэтому в них нельзя допускать больших скоростей движения воды в трубах; следовательно, диаметры труб должны быть большими. Система может оказаться экономически невыгодной. Поэтому применение систем с естественной циркуляцией допускается лишь для небольших зданий.

Преимущества и недостатки систем отопления с естественной циркуляцией воды:

  • сокращен радиус действия (до 30м по горизонтали) из-за небольшого – – циркуляционного давления;
  • повышена стоимость (до 5-7% стоимости здания), в связи с применением труб большого диаметра;
  • увеличены расход металла и затраты труда на монтаж системы;
  • замедлено включение системы в действие;
  • повышены опасность замерзания воды в трубах, проложенных в – неотапливаемых помещениях.
  • относительная простота устройства и эксплуатации;
  • независимость действия от снабжения электрической энергией;
  • отсутствие насоса, а соответственно шума и вибраций;
  • сравнительная долговечность (при правильной эксплуатации система может действовать 35-40 лет и более без капитального ремонта);
  • саморегулирование, обусловливающее ровную температуру помещений.

В системе при изменении температуры и плотности воды изменяется и расход вследствие возрастания. Или уменьшения естественного циркуляционного давления. Одновременное изменение температуры и расхода воды обеспечивает теплопередачу приборов, необходимую для поддержания заданной температуры помещений, т.е. придает системе тепловую устойчивость.

По температуре теплоносителя различаются системы низкотемпературные

В системах водяного отопления с естественной циркуляцией. Циркуляционные давления измеряются всего лишь десятками миллиметров водяного столба. Столь малые давления не позволяют устраивать данные системы в зданиях, имеющих большую протяженность, кроме того, они требуют применения труб значительных диаметров, что ведет к большому расходу металла.

Перечисленных недостатков лишены системы водяного отопления с искусственной циркуляцией. В них циркуляция воды создается центробежными насосами. Насосы, действующие в замкнутых кольцах системы отопления, заполненных водой, воду не поднимают. А только ее перемещают, создавая циркуляцию, и поэтому называются циркуляционными.

Читать статью  Как наладить, отрегулировать, отбалансировать систему обогрева

Циркуляционный насос

Циркуляционный насос включает, как правило, обратную магистраль системы отопления для увеличения срока службы деталей, взаимодействующих с горячей водой.

В системах отопления целесообразно применять специальные циркуляционные насосы перемещающие значительное количество воды и развивающие сравнительно небольшие давления. Это малошумные горизонтальные лопастные насосы центробежного типа, соединенные в единый блок с электродвигателями и закрепляемые непосредственно на трубах (без фундамента).

Применение насосных: систем отопления позволяет существенно увеличить протяженность, трубопровода и уменьшить металлоемкость системы отопления за счет уменьшения диаметров разводящих трубе проводов. Кроме того, с установкой циркуляционного насоса появляется возможность применения новых схемных решений системы отопления, например, отказ от верхней разводки трубопроводов. Однако применение насосных систем отопления возможно только при условии надежного электроснабжения.

При отсутствии теплогенераторов на твердом топливе с топками длительного горения могут найти применение системы водяного отопления с баком аккумулятором и циркуляционным насосом типа ЦВЦ такая система позволяет значительно сократить эксплуатационные затраты по обслуживанию генератора теплоты.

Принцип подобной системы отопления состоит в том, что тепловую мощность теплогенератора выбирают в 3 раза больше, чем теплопотери отапливаемого дом, за счет чего появляется возможность не только обеспечивать компенсацию теплопотерь дома, но и аккумулировать теплоту в специальном баке, которы начинает работать по прекращении эксплуатации теплогенератора. Объем бака-аккумулятора подбирают таким образом, чтобы время его разрядки составляло не менее 8 часов (при работе теплогенераторов два раза в сутки по 4 часа).

Воздушное отопление

Системы воздушного отопления различают в зависимости от способа создания циркуляции воздуха: гравитационные и вентиляторные. Гравитационная воздушная система отопления основана на разности плотности воздуха при различных температурах. В процессе прогрева возникает естественная циркуляция воздуха в системе. В вентиляторной системе используется электрический вентилятор, который повышает давление воздуха и распределяет его по воздуховодам и помещениям (принудительная механическая циркуляция).

Воздух нагревается в калориферах, подогревающихся изнутри водой, паром, электричеством или горячими газами. Калорифер размещается либо в отдельной вентиляторной камере (центральная система отопления), либо непосредственно в помещении, которое отапливается (местная система).

Отсутствие замерзающего теплоносителя делает удачным этот вид отопления для домов с непостоянным использованием. Воздушное отопление быстро прогреет дом, а автоматические регуляторы будут поддерживать заданную вами температуру. К недостаткам такого отопления можно отнести разве что опасность распространения движущимся воздухом вредных веществ.

Виды воздушного отопления

При воздушном отоплении циркулирующий нагретый воздух охлаждается, передавая теплоту при смешении с воздухом обогреваемых помещений и иногда через их внутренние ограждения. Охлажденный воздух возвращается в тепловой центр.

Системы воздушного отопления по способу создания циркуляции воздуха разделяются на системы с естественной циркуляцией (гравитационные) и с механическим побуждением движения воздуха с помощью вентилятора.

В гравитационной системе используется различие в плотности нагретого и окружающего воздуха. Как и в водяной вертикальной гравитационной системе, при различной плотности воздуха в вертикальных частях возникает, естественное движение воздуха в системе. При применении вентилятора в системе создается вынужденное движение воздуха. Воздух, используемый в системах отопления, нагревается до температуры, обычно не превышающей 60°С, в специальных теплообменниках – калориферах. Калориферы могут обогреваться паром, водой, электричеством или горячими газами; система воздушного отопления соответственно называется водовоздушной, паровоздушной, электровоздушной, газовоздушной.

Воздушное отопление может быть местным и центральным

Системы отопления

Принципиальные схемы местной (а) и центральной (б) систем воздушного отопления Отопительный агрегат; 2-помещение; 3-рабочая Зона; 4- обратный воздуховод; 5 – вентилятор; 6- теплообменник (калорифер); 7-подающий воздуховод.

В местной системе воздух нагревается в отопительной установке с теплообменником (калорифером или другим отопительным прибором), находящимся в обогреваемом помещении.

В центральной системе теплообменник (калорифер) размещается в отдельной камере – тепловом центре. Воздух при температуре tв подводится к калориферу по обратным воздуховодам (рециркулирует), горячий воздух при температуре tv перемещается вентилятором в помещения по подающим воздуховодам.

В современных системах воздушного отопления малоэтажных зданий воздух нагревают обычно в калориферах-теплообменниках, печах, в которых тепло передается воздуху через стенку продуктами сгорания топлива или электрическими нагревателями. Нагретая изнутри металлическая (или кирпичная) поверхность калорифера (печи) охлаждается снаружи, отдавая тепло воздуху. Теплоотдача воздуху тем выше, чем больше поверхность теплообмена, поэтому искусственно увеличивают поверхность теплообмена или увеличивают скорость движения воздуха, соприкасающегося с поверхностью теплообменника.

Местное отопление часто приравнивается только к производственным помещениям. Приборы местного отопления используются для таких помещений, которые используются лишь в определенные периоды, в помещениях вспомогательного характера, в помещениях, которые сообщаются с наружными воздушными потоками.

Главными приборами системы местного отопления являются вентилятор и нагревательный прибор. Для воздушного отопления могут применяться такие устройства и приборы, как: воздушно-отопительные устройства, тепловые вентиляторы или тепловые пушки. Такие приборы работают на принципе воздушной рециркуляции.

Паровое отопление

Паровое отопление — одна из разновидностей систем отопления зданий. В отличие от водяного или воздушного отопления, теплоносителем является водяной пар. Иногда в быту водяное отопление зданий неправильно называют «паровым», хотя в жилых и общественных зданиях применение парового отопления сейчас запрещено строительными нормами и правилами.

Особенностью парового отопления является комбинированная отдача тепла рабочим телом (паром), которое не только снижает свою температуру, но и конденсируется на внутренних стенках отопительных приборов. Удельная теплота парообразования (конденсации), которая выделяется при этом, составляет около 2300 кДж/кг, тогда как остывание пара на 50 °C дает только 100 кДж/кг.

Источником тепла в системе парового отопления может служить отопительный паровой котёл, отбор пара из паровой турбины или редукционно-охладительная установка (РОУ), снижающая давление и температуру пара энергетических котлов до безопасных для потребителя параметров. Также источником вырабатываемой тепловой энергии с паром могут служить утилизационные установки, устанавливаемые, например, на металлургических предприятиях. Отопительными приборами являются радиаторы отопления, конвекторы, оребрённые или гладкие трубы. Образовавшийся в отопительных приборах конденсат возвращается к источнику тепла самотёком (в замкнутых системах) или подаётся насосом (в разомкнутых системах). Давление пара в системе может быть ниже атмосферного (т. н. вакуум-паровые системы) или выше атмосферного (до 6 атм). Температура пара не должна превышать 130 °С. Изменение температуры в помещениях производится регулированием расхода пара, а если это невозможно – периодическим прекращением подачи пара. В преддверии морозов иногда приходится заранее прогревать здание, чтобы использовать его тепловую инерцию (т. н. «перетоп»).

Преимущества и недостатки

Преимуществами парового отопления являются:

  1. Небольшие размеры и меньшая стоимость отопительных приборов.
  2. Малая инерционность и быстрый прогрев системы.
  3. Отсутствие потерь тепла в теплообменниках.

Недостатками парового отопления являются:

  1. Высокая температура на поверхности отопительных приборов.
  2. Невозможность плавного регулирования температуры помещений.
  3. Шум при заполнении системы паром.
  4. Сложности монтажа отводов к работающей системе.

Из-за невысокой стоимости паровое отопление широко применялось в первой половине XX века. В настоящее время паровое отопление может применяться как при централизованном, так и при автономном теплоснабжении в производственных помещениях, в лестничных клетках и вестибюлях, в тепловых пунктах и пешеходных переходах. Целесообразно использовать такие системы на предприятиях, где пар так или иначе применяется для производственных нужд.

Виды парового отопления

При паровом отоплении в приборах выделяется теплота фазового превращения в результате конденсации пара. Конденсат удаляется из приборов и возвращается в паровые котлы.

Системы парового отопления по способу возвращения конденсата в паровые котлы разделяются на замкнутые с самотечным возвращением конденсата рис а) и разомкнутые с перекачкой конденсата насосами. рис б)

В замкнутой системе конденсат непрерывно поступает в котлы под действием разности давления, выраженного столбом конденсата высотой h (см. рис. а) и давления пара в котлах. Поэтому отопительные приборы должны находиться достаточно высоко над паросборниками котлов (в зависимости от давления пара в них).

В разомкнутой системе парового отопления конденсат из отопительных приборов непрерывно поступает в конденсатный бак и по мере накопления периодически перекачивается конденсатным насосом в котлы на тепловой станции. У такой системы расположение бака должно обеспечивать стекание конденсата из нижнего отопительного прибора в бак, а давление пара в котлах преодолевается давлением насоса.

В зависимости от давления пара системы парового отопления подразделяются на субатмосферные, вакуум-паровые, низкого и высокого давления (табл. 1.)

Системы отопления и их виды

Принципиальные схемы замкнутой (а) и разомкнутой (б) системы парового отопления. -паровой котел с паросборником. 2 – паропровод; 3 -отопительный прибор; 4 и 6 – самотечный и напорный конденсатопроводы; 5 – воздуховыпускная труба; 7 – конденсатный бак; 8 – конденсатный насос; 9 – парораспределительный коллектор.

Максимальное давление пара ограничено допустимым пределом длительно поддерживаемой температуры поверхности труб и отопительных приборов в помещениях (избыточному давлению 0,17 МПа соответствует температура пара приблизительно 130 °С).

Таблица 1. – Параметры (округленные) насыщенного пара в системах парового отопления

Системы отопления и их виды

В системах субатмосферного и вакуум-парового отопления давление в приборах меньше атмосферного и темпера пара ниже 100 ° С. В этих системах можно, изменяя величину вакуума (разрежения), регулировать температуру пара.

Теплопроводы систем парового отопления делятся на паропроводы, по которым пар перемещается от теплового центра до отопительных приборов, и конденсатопроводы для отвода конденсата. По паропроводам пар перемещается под давлением рп в паросборниках котлов или в коллекторах к отопительным приборам.

Конденсатопроводы могут быть самотечными и напорными. Самотечные трубы прокладывают ниже отопительных приборов с уклоном в сторону движения конденсата. В напорных трубах конденсат перемещается под действием разности давления, создаваемой насосом или остаточным давлением пара в приборах.

Вывод

Система отопления представляет собой комплекс элементов, необходимых для обогрева помещений. Основными элементами являются генераторы теплоты, теплопроводы, отопительные приборы. Передача теплоты осуществляется с помощью теплоносителей — нагретой воды, пара или воздуха. Различают местные и центральные системы отопления.

К местным относят системы, в которых все элементы объединены в одном устройстве и которые предназначены для обогрева одного помещения. К местным системам относят печное отопление, газовое (при сжигании топлива в местном устройстве) и электрическое.

В водяных и паровых системах теплоноситель — вода или пар — нагревается в генераторе теплоты и передается по трубопроводам к нагревательным приборам. Прокладка трубопроводов систем отопления недопускается:

  • на чердаках зданий (кроме теплых чердаков) и в проветриваемых подпольях в районах с расчетной температурой минус 40 °С и ниже (параметры Б);
  • транзитных – через помещения убежищ, электротехнические помещения, шахты с электрокабелями, пешеходные галереи и тоннели.

На чердаках допускается установка расширительных баков с тепловой изоляцией из негорючих материалов.

В заключение перечислим преимущества и недостатки основных теплоносителей для отопления.

  • При использовании воды обеспечивается довольно равномерная температура помещений, можно ограничить температуру поверхности отопительных приборов, сокращается по сравнению с другими теплоносителями площадь поперечного сечения труб, достигается бесшумность движения в трубах. Недостатками применения воды являются значительный расход металла и большое гидростатическое давление в системах; тепловая инерция воды замедляет регулирование теплопередачи приборов.
  • При использовании воздуха можно обеспечить быстрое изменение или равномерность температуры помещений, избежать установки отопительных приборов, совмещать отопление с вентиляцией помещений, достигать бесшумности его движения в каналах. Недостатками являются его малая теплоаккумулирующая способность, значительные площадь поперечного сечения и расход металла на воздуховоды, относительно большое понижение температуры по длине воздуховодов.
  • При использовании пара сравнительно сокращается расход металла за счет уменьшения площади приборов и поперечного сечения конденсатопроводов, достигается быстрое прогревание приборов. Гидростатическое давление пара в вертикальных трубах по сравнению с водой минимально. Однако пар как теплоноситель не отвечает санитарно-гигиеническим требованиям, его температура высока и постоянна при данном давлении, что не обеспечивает регулирования теплопередачи приборов, движение его в трубах сопровождается шумом.

И так при выборе видов отопления по теплоносителю – водяного, воздушного, парового следует учесть все факторы, влияющие на окружающую среду, на приборы, на саму систему.

Классификация систем отопления

Системы отопления классифицируются по приведенным ниже признакам.

1. По месту размещения генератора тепла относительно отапливаемых помещений:

2. По виду теплоносителя:

— воздушного (нагрев воздуха непосредственно в здании);

— комбинированные (пароводяные, водоводяные, паровоздушные, водовоздушные, газовоздушные и др.).

3. По способу перемещения теплоносителя:

— с естественным побуждением;

— с механическим побуждением.

4. По способу передачи тепла помещению:

К местным относят системы отопления, в которых генератор тепла и теплоотдающая часть находятся непосредственно в отапливаемом помещении, обслуживают одно или несколько смежных помещений, это печное, газовое и электрическое отопление. Центральными системами отопления называют такие системы, генераторы тепла в которых расположены вне отапливаемых помещений, это системы, которые работают от котельной, ТЭЦ и других источников централизованной подачи тепла в микрорайон, город.

Выбор систем отопления

Тепловой режим в зданиях и помещениях может быть постоянным и переменным в зависимости от их назначения.

В зданиях и помещениях с постоянным тепловым режимом применяют системы отопления в соответствии с рекомендациями приложения 11 из СНиП 2.04.05-91 «Отопление, вентиляция и кондиционирование». Здесь приведены характеристики систем отопления в зависимости от назначения помещения.

Для жилых, общественных и административно-бытовых зданий рекомендуют применять отопление

— водяное с радиаторами, панелями и конвекторами при температуре теплоносителя tтепл не более 95°С (для двухтрубных систем) и не более 105°С (для однотрубных систем);

— водяное с нагревательными элементами, встроенными в наружные стены, перекрытия и полы;

— местное (поквартирное) водяное с радиаторами или конвекторами при температуре теплоносителя tтепл не более 95 °С;

— электрическое или газовое с температурой на теплоотдающей поверхности не более 95 °С.

В производственных зданиях применяют следующие системы отопления: водяное или паровое, воздушное, электрическое или газовое в зависимости от категории помещений по пожаро- взрывобезопасности.

Температуру теплоносителя в системах отопления принимают в зависимости от назначения помещений в соответствии со СНиП 2.04.05-91 (150°С – для пассажирских залов вокзалов, производственных помещений категорий А, Б, В, Г и Д без выделений пыли или с выделением негорючей пыли, категорий Г и Д без выделений пыли или с повышенными требованиями к чистоте воздуха или со значительным влаговыделением; для производственных помещений категорий А, Б с выделением горючей пыли – 110°С, категории В, Г и Д с выделением горючей пыли – 130°С).

Для того, чтобы можно было пользоваться этими рекомендациями, необходимо дополнить классификацию видами водяных систем отопления.

Системы отопления разделяют на:

— однотрубные и двухтрубные;

— вертикальные и горизонтальные;

— с верхней разводкой и нижней разводкой;

— тупиковые и с попутным движением воды.

Примеры систем отопления (схемы) приведены на рис. 4.1—4.7. На рисунках: 1 – нагревательные приборы; 2 – трубопроводы; 3 – трубопровод обратной воды; 4 – вентиль (клапан); 5 – расширительный бак; 6 – нагревательный котел или теплообменник; 7 – циркуляционный насос; tпод – температура теплоносителя в подающем трубопроводе; tобр – температура теплоносителя в обратном трубопроводе.

Классификация систем отопления Классификация систем отопления
Рис. 4.1. Однотрубная система отопления: Рис. 4.2. Двухтрубная система отопления
Классификация систем отопления Классификация систем отопления
Рис. 4.3. Горизонтальная система отопления Рис. 4.4. Система отопления с верхней разводкой

Классификация систем отопления

Рис. 4.5. Система отопления с попутным движением воды (см. также рис. 4.2)

Системы отопления могут быть с естественным побуждением (рис. 4.6) и с искусственным побуждением (рис. 4.7). В системах с искусственным побуждением применяются элеваторы и подпиточные насосы, которые устанавливаются в узлах ввода теплоносителя в здание.

Классификация систем отопления Классификация систем отопления
Рис. 4.6. Система отопления с естественным побуждением Рис. 4.7. Система отопления с искусственным побуждением

Примеры вертикальных систем отопления см. на рис. 4.1 и 4.2, систем отопления с нижней разводкой см. на рис. 4.1 и 4.2, систем отопления тупиковых см. на рис. 4.3 и 4.4.

Системы водяного отопления с естественной циркуляцией могут применяться для зданий небольшой протяженности и в том случае, если отсутствует централизованное теплоснабжение и в дальнейшем не предполагается его устройство.

Радиус действия систем с естественной циркуляцией следует принимать не более 30 м при расстоянии от середины высоты котла до середины нижнего нагревательного прибора не менее 3 м. В системах квартирного водяного отопления с естественной циркуляцией в связи с большим охлаждением воды в трубопроводах допускается установка генератора тепла и нагревательных приборов на одном уровне.

Как правило, следует применять системы водяного отопления с искусственной циркуляцией. Диаметры труб в насосных системах благодаря большому давлению, создаваемому насосом, значительно меньше, чем в системах водяного отопления с естественной циркуляцией, и радиус их действия велик. Стоимость устройства насосных систем отопления меньше, чем систем с естественной циркуляцией.

Применение систем водяного отопления целесообразно в жилых, общественных и промышленных зданиях. Двухтрубные системы с верхней разводкой рекомендуется применять в зданиях с числом этажей до трех включительно.

нотрубные вертикальные системы с осевыми или смещенными замыкающими участками рекомендуется применять в зданиях с числом этажей более трех. Однотрубные вертикальные проточные регулируемые и нерегулируемые системы можно применять независимо от этажности здания. Однотрубные вертикальные системы с нижней разводкой рекомендуется применять в бесчердачных зданиях, однотрубные горизонтальные системы – в случае необходимости поэтажного выключения системы отопления здания.

Системы с попутным движением теплоносителя следует проектировать при невозможности увязки потерь давления в отдельных кольцах систем отопления.

Отопление в нерабочее время называется дежурным.

В холодный период года дежурное отопление в общественных, административно-бытовых и производственных помещениях, когда они не используются, предусматривают для поддержания температуры воздуха ниже нормируемой, но не ниже 5°С, используя основные отопительные системы. При этом должно быть обеспечено восстановление нормируемой температуры к началу использования помещения или к началу работы, При экономическом обосновании допускается проектировать специальные системы дежурного отопления.

Преимуществасистем водяного отопления заключаются в следующем:

— невысокая температура на поверхности нагревательных приборов;

— высокая теплоемкость теплоносителя (воды);

— простота центрального регулирования за счет изменения температуры воды (качественное регулирование);

Недостатки систем водяного отопления следующие:

— большое гидравлическое давление в нижней части систем, что ограничивает их высоту;

— опасность замерзания воды в трубопроводах, прокладываемых в неотапливаемых помещениях и в лестничных клетках, с разрушением системы.

Для производственных помещений применяют также системы отопления с теплоносителем в виде пара.

Преимущества паровых систем отопления в сравнении с водяными системами отопления следующие:

— большая теплоотдача нагревательных приборов;

— отсутствует опасность замерзания;

— возможность быстрого перемещения пара на большие расстояния без применения искусственного побуждения.

Недостатки паровых систем отопления:

— высокая температура поверхности труб и нагревательных приборов;

— невозможность гибкого центрального регулирования, в связи с чем применяется регулирование пропусками (периодическими включениями и отключениями);

— более сложная эксплуатация;

— значительные тепловые напряжения и деформации системы;

— меньший срок эксплуатации из-за коррозии труб.

Воздушное отопление может применяться как в административно-бытовых, так и в производственных помещениях. Его преимущества перед другими видами отопления следующие:

— возможность совмещения с системой вентиляции;

— отсутствие в отапливаемых помещениях каких-либо нагревательных приборов;

— отсутствие тепловой инерции;

— возможность центрального качественного регулирования.

Недостатки воздушного отопления:

— большие сечения каналов для транспортировки нагретого воздуха;

— большие непроизводительные потери тепла при прокладке воздуховодов в неотапливаемых помещениях.

В помещениях с постоянным или длительным пребыванием людей и в помещениях, где по условиям производства требуется поддержание положительных температур в холодный период года, устраивается система отопления.

Отоплением называется искусственное обогревание помещений здания с возмещением теплопотерь для поддержания в них температуры на заданном уровне, определяемом условиями теплового комфорта для находящихся в них людей и требованиями протекающего технологического процесса. Известно три вида отопления: водяное, паровое и воздушное.

Системы отопления включают три основных элемента: источник теплоты (генератор тепла), теплопроводы (каналы или трубопроводы) и отопительные (нагревательные) приборы.

В генераторе тепла происходит сжатие тепла, а выделяемое при этом тепло передается теплоносителю, т.е. среде, переносящей тепло от генератора к нагревательным приборам. Нагревательные приборы передают полученное от генератора тепло воздуху помещений. По теплопроводам теплоноситель перемещается от генератора тепла к нагревательным приборам.

Система отопления является одной из строительно-технологических установок здания, которая должна отвечать следующим основным требованиям:

1) санитарно-гигиеническим – обеспечивать необходимые внутренние температуры, регламентируемые соответствующими СНиП, без ухудшения состояния воздушной среды;

2) экономическим – обеспечивать наименьшие приведенные затраты при уменьшении расхода металла;

3) строительным – предусматривать размещение отопительных элементов в уровне с архитектурно-планировочным и конструктивным решениями здания без нарушения прочности основных конструкций при монтаже и ремонте систем отопления.

4) монтажным – предусматривать возможность монтажа индустриальными методами с максимальным использованием унифицированных узлов заводского изготовления при минимальном количестве типоразмеров и ограничением применения узлов и деталей индивидуального изготовления;

5) эксплуатационным – характеризоваться простотой и удобством управления и ремонта, бесшумностью и безопасностью действия;

6) эстетическим – хорошо гармонировать с внутренней отделкой помещения и не занимать излишних площадей.

В практике строительства нашли применение разнообразные системы отопления, в основе выбора которых лежит использование тех или иных особенностей систем.

Системы отопления классифицируют по следующим основным признакам (рисунок 5): по виду использованного теплоносителя; по способу перемещения теплоносителя; по месту расположения источника теплоты.

По виду использованного теплоносителя системы отопления делятся на водяные, паровые, воздушные, огневоздушные.

По способу перемещения теплоносителя системы отопления делятся на системы с естественным (гравитационным) побуждением движения теплоносителя и системы с принудительным побуждением.

По месту расположения источника теплоты системы отопления разделяют на центральные и местные.

Водяные системы отопления С принудительным побуждением Центральные Местные Двухтрубные Однотрубные
С естественным побуждением Местные
Паровые системы отопления Низкого давления Высокого давления С самотечным возвратом конденсата С конденсационным баком и питательным насосом
Печное отопление С нетеплоемкими печами С теплоемкими печами
Воздушное отопление Совмещенное с вентиляцией (прямоточное) Рециркуляционное
Электрическое отопление С промежуточными теплоносителями (вода, пар, воздух) С непосредственным обогревом помещения

Рисунок — 5 Классификация систем отопления

В местной системе отоплениягенератор тепла, нагревательные приборы и теплоотдающие поверхности конструктивно объединены в одном устройстве. Примером местного отопления может служить комнатная печь. В ней генератором тепла является топливник, в котором происходит сгорание топлива, теплопроводом служат дымообороты, прогревающие стенки печи и отводящие продукты сгорания из топки, а воздух помещений нагревается при его непосредственном соприкосновении с горячими поверхностями стенок печи. К местным системам отопления относятся также газовое отопление (при сжигании газа в нагревательных приборах, находящихся в отапливаемом помещении) и электрическое, если электрическая энергия переходит в тепловую непосредственно в самих нагревательных приборах. Радиус действия местных систем отопления невелик и ограничивается одной или двумя-тремя смежными комнатами.

Центральными системами отопления называются системы, в которых генератор тепла (например, котел) находится вне отапливаемых помещений, а теплоноситель к местам потребления подается по трубопроводам.

В центральных системах отопления одним генератором тепла, состоящим из одного котла или группы котлов, могут отапливаться не только отдельное здание, но и группы зданий. Система отопления, которая обслуживает целую группу зданий от одной котельной, называется районной.

В зависимости от вида теплоносителя центральные системы отопления подразделяются на системы водяного, парового, воздушного и комбинированного отопления.

Если в системе водяного отопления циркуляция воды в трубопроводах и нагревательных приборах происходит под действием разности объемных весов охлажденной и нагретой воды, то она называется системой с естественной циркуляцией.

В системах большой протяженности применять естественную циркуляцию воды экономически нецелесообразно, так как это привело бы к необходимости установки труб слишком больших диаметров. Поэтому в этих случаях устраивают системы водяного отопления с искусственной циркуляцией воды при помощи насосов (или насосные). Эти системы отопления в качестве теплоносителя могут использовать воду с температурой до 100 0 С или высокотемпературную воду (с температурой более 100 0 С).

Читать статью  Принцип работы однотрубной системы отопления: схемы разводки и расчеты пошаговая инструкция по монтажу

В системах парового отопления пар из котла по трубопроводам поступает в нагревательные приборы, где конденсируется и, выделяя скрытую теплоту парообразования, нагревает эти приборы. Конденсат же возвращается в котел и вновь превращается в пар.

Системы парового отопления различаются по величине первоначального давления и бывают вакуум-паровыми (с давлением пара до 1 кгс/см 2 ), низкого давления (от 1,0 до 1,7 кгс/см 2 ) и высокого давления (более 1,7 кгс/см 2 ). В системах парового отопления пар перемещается под действием разности давлений на выходе из котла и перед нагревательным прибором.

Система воздушного отопления в зависимости от вида первичного теплоносителя подразделяются на водовоздушные, паровоздушные, огневоздушные, электровоздушные и газовоздушные. По способу передвижения воздуха воздушные системы могут быть с естественным и механическим побуждением. Во втором случае используются вентиляторы.

Комбинированной системой отопления называют систему, в которой применены либо два различных теплоносителя, либо один теплоноситель, но с разными параметрами. К ней относятся пароводяные, водоводяные и все воздушные системы отопления.

Системы водяного и парового отопления различаются также по способу разводки магистральных трубопроводов (с верхней, нижней и средней разводкой), по способу присоединения нагревательных приборов к стоякам (двухтрубные и однотрубные), по способу теплоотдачи нагревательных приборов (конвекционные и лучистые) и по типу применяемых нагревательных приборов (радиаторные, конвекторные, панельные, из гладких труб и др.).

Требования, предъявляемые к теплоносителям систем отопления.Основные требования, предъявляемые к теплоносителям, это способность аккумулировать тепло, подвижность и незначительное потребление электроэнергии на их перемещение. Применяемые в качестве теплоносителя горячая вода, пар и воздух наиболее близко соответствует этим требованиям.

К тому же температура теплоносителя (при воздействии ее на нагревательные приборы) не должна ухудшать гигиенические условия воздуха помещения.

Вода, пар и воздух обладают различными физическими свойствами. Вода характеризуется большой теплоемкостью, значительным объемным весом и большой подвижностью, что дает возможность передавать на большие расстояния значительное количество тепла при сравнительно небольшом объеме воды. При использовании в качестве теплоносителя горячей воды температуры поверхности нагревательных приборов (а следовательно, и их теплоотдачу) можно регулировать из одного общего центра (например, котельной), что позволяет экономней расходовать топливо.

Таблица 2 — Свойства водяного пара

Давление в кгс/см 2 Темпера тура в С 0 Объем 1 кг пара в м 3 Вес 1 м 3 пара в кг Теплота испарения 1 кг пара в ккал Полное теплосодержа ние 1 кг пара в ккал
99,1 1,722 0,5807 539,7 639,3
1,2 104,2 1,4521 0,6887 539,5 641,3
1,6 112,7 1,1096 0,9013 531,2 644,7
119,6 0,9006 1,1104 526,8 647,2
132,8 0,6163 1,6224
142,8 0,4708 2,1239 511,2 655,4
0,382 2,6177 505,9 658,1

При паровом отоплении большое количество тепла, выделяющегося при конденсации пара, и малый объемный вес последнего позволяют передавать на большие расстояния значительное количество тепла с минимальными затратами электроэнергии на перемещение теплоносителя. Кроме того, при использовании в качестве теплоносителя пара существенно сокращается количество нагревательных приборов, так как температура последних значительно выше, чем при теплоносителе — горячей воде. К недостаткам пара, как теплоносителя, следует отнести невозможность центрального регулирования теплоотдачи нагревательных приборов, высокую температуру на поверхности последних и возможность пригорания на них органической пыли, что ухудшает санитарно-гигиенические условия отапливаемых помещений. Кроме того, потери тепла паропроводами и конденсатопроводами значительно превышают потери тепла трубопроводами водяных систем отопления.

Воздушное отопление с использованием в качестве теплоносителя нагретого воздуха, имеющего сравнительно небольшие температуру (50 0 -70 0 С), теплоемкость и объемный вес, потребляет много электроэнергии на перемещение больших количеств воздуха. К недостаткам его можно отнести также шум, возникающий при работе вентиляторов.

По экономическим соображениям воздушное отопление предпочтительнее водяного и парового, так как не требует установки нагревательных приборов, стоимость которых составляет около 60% стоимости всей системы отопления.

Характеристика систем отопления

Общие положения

Система отопления – это совокупность взаимосвязанных конструктивных элементов, предназначенных для получения, переноса и передачи теплоты в обогреваемые помещения здания.

Основные конструктивные элементы системы отопления: теплоисточник (теплогенератор при местном или теплообменник при централизованном теплоснабжении), предназначенный для получения теплоты; теплопроводы (элементы для переноса теплоты от теплоисточника к отопительным приборам); отопительные приборы (элементы для передачи теплоты в помещение).

Перенос по теплопроводам может осуществляться с помощью жидкой или газообразной среды. Жидкая (вода или специальная незамерзающая жидкость – антифриз) или газообразная (пар, воздух) среда, перемещающаяся в системе отопления, называется теплоносителем.

Расчетная тепловая система отопления выявляется в результате сопоставления теплового баланса в обогреваемых помещениях при расчетной температуре наружного воздуха – средней температуре наиболее холодной пятидневки tн.р с обеспеченностью kоб = 0,92 (рис. 1.1). Расчетная тепловая мощность в течение отопительного сезона, продолжительностью D zо.с, должна использоваться частично при текущей температуре наружного воздуха tн.i и только при tн.р – полностью.

Требования, предъявляемые к системам отопления:

— санитарно-гигиенические: поддержание заданной температуры воздуха и внутренних поверхностей ограждений помещений во времени при допустимой подвижности воздуха; ограничение температуры поверхности отопительных приборов;

— экономические: минимальные капитальные вложения, экономный расход тепловой энергии при эксплуатации;

— архитектурно-строительные: компактность; увязка со строительными конструкциями;

— производственно-монтажные: минимальное количество унифицирован-ных узлов и деталей; механизация их изготовления; сокращение ручного труда при монтаже;

— эксплуатационные: эффективность действия в течение всего периода работы; долговечность, ремонтнопригодность, безотказность; безопасность и бесшумность действия.

Наиболее важны санитарно-гигиенические и эксплуатационные требования, от которых зависит поддержание заданной температуры в помещениях в течение отопительного сезона.

Рис. 1.1. Изменение среднесуточной температуры наружного воздуха в течение года в Москве:

tп – температура помещения; tн1 – минимальная среднесуточная температура наружного воздуха

Классификация систем отопления

Системы отопления подразделяются на местные и центральные.

В местных системах для отопления, как правило, одного помещения все три элемента конструктивно объединяются в одной установке, непосредственно в которой происходит получение, перенос и передача теплоты в помещение. Примером местной системы отопления являются отопительные печи, конструкции и расчет которых будут рассмотрены далее, а также системы отопления с использованием электрической энергии.

Центральными называются системы, предназначенные для отопления группы помещений из единого теплового центра. Котлы или теплообменники могут размещаться непосредственно в обогреваемом здании (в котельной или местном тепловом пункте) либо вне здания – в центральном тепловом пункте (ЦТП), на тепловой станции (отдельно стоящая котельная) или ТЭЦ.

Теплопроводы центральных систем подразделяются на магистрали (подающие, по которым подается теплоноситель, и обратные, по которым отводится охладившийся теплоноситель), стояки (вертикальные трубы) и ветви (горизонтальные трубы), связывающие магистрали с подводками к отопительным приборам.

Центральная система отопления называется районной, когда группа зданий отапливается из отдельно стоящей центральной тепловой станции. Теплоноситель (как правило, вода) нагревается на тепловой станции, перемещается по наружным (t1) и внутренним (внутри здания tг < t1) теплопроводам в помещения к отопительным приборам и, охладившись, возвращается на тепловую станцию (рис. 1.2).

Рис. 1.2. Схема районной системы отопления:

1 – тепловая станция; 2 – местный тепловой пункт; 3 и 5 – подающий и обратный стояки системы отопления; 4 – отопительные приборы; 6 и 7 – наружные подающий и обратный теплопроводы; 8 – циркуляционный насос наружного теплопровода

Используются, как правило, два теплоносителя. Первичный высокотемпературный теплоноситель от тепловой станции перемещается по городским распределительным теплопроводам к ЦТП или местным тепловым пунктам зданий и обратно. Вторичный теплоноситель после нагревания в теплообменниках или смешения с первичным поступает по внутренним теплопроводам к отопительным приборам обогреваемых помещений и возвращается в ЦТП или местный тепловой пункт.

Первичным теплоносителем обычно служит вода, реже пар или газообразные продукты сгорания топлива. Если, например, первичная высокотемпературная вода нагревает вторичную воду, то такая система центрального отопления называется водоводяной. Аналогично могут существовать водовоздушная, пароводяная, газовоздушная и другие системы центрального отопления.

По виду вторичного теплоносителя местные и центральные системы отопления называют системами водяного, парового, воздушного или газового отопления.

По каким признакам могут подразделяться

Классификация систем отопления может производиться по нескольким признакам:

месту расположения нагревательного оборудования;

виду используемого теплоносителя.

Также такие сети могут подразделяться по типу применяемого оборудования и конструкции.

Виды отопительных систем по месту расположения нагревательного агрегата

В этом плане различают сети:

Называется такая классификация систем отопления — «по радиусу действия». Первый тип сетей используется для обогрева большого количества зданий. Нагревательное оборудование в данном случае располагается в отдельно стоящих постройках. К примеру, именно такая система предусматривается для отопления квартир городских многоэтажек, цехов предприятий, офисов.

В автономных системах нагревательное оборудование устанавливается непосредственно в том здании, за создание комфортного микроклимата в котором зимой и отвечает. Котлы и другое оборудование в данном случае, конечно же, используются менее мощные и дорогие.

Классификация систем отопления и их виды: автономные сети

Инженерные коммуникации этого типа чаще всего используются для обогрева малоэтажных загородных зданий. Также их зачастую обустраивают в разного рода хозяйственных постройках, гаражах и банях.

Классификация систем отопления зданий малой этажности производится прежде всего по виду используемого нагревательного оборудования. В старых небольших загородных жилых зданиях иногда обустраивается печное отопление. Но чаще всего в жилых частных домах в наше время используются все же автономные магистральные сети, за поддержание нужной температуры теплоносителя в которых отвечают котлы.

Иногда в качестве нагревательного оборудования в частных домах также используются электрические радиаторы, калориферы или тепловые пушки. В некоторых случаях в таких зданиях могут обустраиваться и комбинированные сети с котлом и, к примеру, печью или камином.

Классификация систем центрального отопления

Сети этого типа подразделяются на:

В первом случае теплоноситель для обогрева зданий отбирается непосредственно из водовода. В закрытых системах вода сначала нагревается в теплообменнике ТЭЦ.

Виды по типу используемого теплоносителя

Чаще всего для обогрева жилых или производственных помещений используются сети:

Классификация систем отопления в данном случае производится по типу используемого теплоносителя. Помимо водяных, паровых и воздушных, в строениях иногда могут использоваться сети, к примеру, радиационные, газовые, электрические. Печное отопление по-другому называют огневоздушным.

Что представляют собой водяные системы отопления

Такие сети считаются оптимальным вариантом для обогрева жилых зданий. Как в частных домах, так и в городских многоэтажках в подавляющем большинстве случаев монтируются именно водяные системы отопления.

В производственных помещениях такие сети также используются достаточно часто. Единственное — их нельзя монтировать в зданиях, предназначенных для хранения таких химических веществ, к примеру, как:

литий и некоторые другие.

То есть такие отопительные сети не собираются там, где хранятся или используются в производственном процессе вещества, способные возгораться при контакте с водой.

В качестве нагревательного оборудования в системах этого типа чаще всего используются котлы. Вода в сетях этого типа циркулирует по трубам, протянуты по помещениям. Непосредственно же за обогрев здания отвечают радиаторы отопления, установленные в комнатах или цехах.

Основным преимуществом водяных систем является то, что батареи и трубы в данном случае не разогреваются слишком сильно. Следовательно, и исключается возможность появления ожогов при случайном контакте с ними. Также на батареях и магистралях таких сетей не горит и не спекается пыль.

Два основных типа водяных систем

В жилых зданиях, в свою очередь, могут использоваться водяные сети:

с естественным током теплоносителя;

с принудительным током.

В этом случае классификация систем отопления производится по способу передвижения теплоносителя по трубам. В сетях первого типа вода от котла и обратно к нему перемещается под действием силы гравитации. В таких коммуникациях используются трубы значительного диаметра. Магистрали же при этом собираются с небольшим уклоном.

В системах отопления принудительного типа за передвижение теплоносителя отвечает циркуляционный насос. Такие сети, хотя и являются энергозависимыми, обустраиваются в жилых, офисах и производственных зданиях чаще всего. Трубы в таких коммуникациях обычно имеют не слишком большое сечение и не портят внешнего вида помещений. Преимуществом систем с принудительной циркуляцией воды, по сравнению с гравитационными, является, помимо всего прочего, и то, что их можно обустраивать в зданиях значительной площади и этажности.

Иногда вместо воды в системах отопления в качестве теплоносителя используется антифриз — вещество, не замерзающее при температуре внешней среды ниже нуля. Такие сети монтируются в тех зданиях, которые посещаются людьми лишь время от времени. При использовании антифриза в качестве теплоносителя при отключении котла зимой исключается возможность размораживания труб и другого оборудования системы.

Типы по конструкции

Помимо всего прочего, в зданиях могут обустраиваться сети:

В этом случае классификация систем водяного отопления производится по типу разводки контура в помещениях. В сетях первого типа теплоноситель подается от котла и возвращается к нему по одной закольцованной магистрали. Радиаторы в таких коммуникациях подключаются последовательно. Основным недостатком систем этого типа является неравномерный нагрев помещений. Ведь последние батареи при использовании такой схемы нагреваются хуже расположенных ближе к котлу. Для компенсации этого недостатка при монтаже однотрубных систем приходится использовать специальную регулирующую и запорную арматуру.

В двухтрубных системах вода в контур отопления поступает по одной трубе, а возвращается — по другой. Все радиаторы в сетях этого типа разогреваются до одинаковой температуры. Но монтировать такие системы сложнее, чем однотрубные. К тому же и обходится их сборка дороже.

Коллекторные системы водяного отопления обычно монтируются в домах выше одного этажа. Магистраль от котла в данном случае подводится сначала к распределительной гребенке. Далее уже от такого коллектора монтируются отдельные контуры на каждый радиатор и другие потребители.

Виды используемого оборудования

Классификация систем водяного отопления, таким образом, может производиться по разным признакам. Но и само оборудование в такие сети может включаться разное. В большинстве случаев при обустройстве систем отопления в жилых и производственных зданиях в качестве основного нагревательного оборудования используются котлы. Такие агрегаты, в свою очередь, могут быть паровыми или водяными.

По виду используемого топлива же котлы подразделяются на:

Также в зданиях могут устанавливаться электрические агрегаты этого типа.

В конструкцию любой водяной системы отопления в обязательном порядке включается расширительный бак. Вода при перепадах температур, как известно, способна увеличиваться в объеме. В результате в магистрали системы отопления создается слишком большое давление, что может привести к порче оборудования и разрыву труб.

Для компенсации давления в водяных системах отопления и используются расширительные баки. По виду такого оборудования сети этого типа классифицируются на:

В первом случае расширительные баки устанавливают обычно на значительной высоте от уровня котла. Представляют они собой открытые устройства.

В закрытых системах отопления используются герметичные расширительные баки. Устанавливается оборудование этого типа рядом с котлом. В обоих случаях бачки чаще всего монтируются на трубе обратки, то есть на той магистрали, по которой уже остывший теплоноситель возвращается в нагревательный агрегат.

Классификация циркуляционных насосов систем отопления выглядит примерно следующим образом:

оборудование с «сухим» ротором;

приборы с «мокрым» ротором.

Второй тип насосов обычно используется для перекачки небольших объемов теплоносителей. Основным преимуществом такого оборудования является простота в установке и использовании.

Насосы с «сухим» ротором отличаются высоким КПД и нетребовательностью к качеству теплоносителя. Но такое оборудование является довольно-таки шумным.

Классификация приборов систем отопления может производиться и по особенностям их конструкции. В этом плане различают насосы:

консольные, монтируемые на фундаменте;

блочные, комплектуемые двигателями с воздушным охлаждением;

inline, с патрубками, находящимися на единой оси.

Радиаторы в системах отопления могут использоваться чугунные, алюминиевые или биметаллические.

Что представляет собой паровая система отопления

Такие системы по принципу работы сходны с водяными. Единственное, в сетях этого типа по контуру разводки циркулирует не вода, а пар. Основным преимуществом таких сетей является практически стопроцентный КПД. Недостатками же паровых систем считаются:

невозможность регулировки температуры нагрева радиаторов;

слишком сильный нагрев батарей и труб;

сравнительно недолгий срок службы оборудования.

Паровые сети

Классификация паровых систем отопления производится по показателям давления пара в магистралях. Различают сети этого типа:

Инженерные коммуникации первого типа используются для отопления зданий большой площади. Также такие системы монтируются в том случае, если теплоноситель приходится подавать на значительные расстояния. Системы низкого давления монтируются в домах малой площади. Вакуумные сети могут использоваться для автономного обогрева как жилых зданий, так и производственных.

Виды воздушных сетей

Такие сети также иногда используются для обогрева офисных, производственных и жилых помещений. Классификация систем воздушного отопления производится:

по способу передачи нагретого воздуха;

В первом случае различают:

системы с естественной циркуляцией;

По принципу работы воздушные сети могут быть:

с полной рециркуляцией;

с частичной рециркуляцией.

В качестве основного нагревательного оборудования в таких сетях используются калориферы. В системах с полной рециркуляцией воздух по каналам направляется в помещения, а затем возвращается обратно в калорифер. В прямоточных сетях после прохождения через комнаты и отдачи тепла он удаляется на улицу. Далее снаружи забирается новая порция воздуха. В системах с частичной рециркуляцией через калорифер одновременно проходят воздух, поступающий и из помещений, и с улицы.

Конвекторные и радиационные системы

Производиться классификация систем отопления зданий может и по типу используемых для обогрева радиаторов. Батареи, устанавливаемые непосредственно в помещениях, бывают:

Чаще всего в жилых домах монтируется первый тип радиаторов. Тепло окружающей среде такие батареи передают путем конвекции. Соприкасаясь с поверхностью радиатора этого типа, воздух нагревается и начинает подниматься вверх. Отдавая тепло окружающим предметам, воздух снова опускается вниз. Здесь он снова соприкасается с поверхностью радиатора.

Радиационные батареи работают по другому принципу. Такие приборы излучают в окружающее пространство инфракрасные лучи. В результате происходит нагрев не воздуха, а непосредственно расположенных в зоне действия радиатора предметов.

Обогрев теплиц

Классификация систем отопления теплиц может производиться по следующим признакам:

типу используемого теплоносителя;

виду применяемого оборудования.

По типу теплоносителя все отопительные сети, используемые в таких сооружениях, подразделяются на:

По виду применяемого оборудования они бывают:

Работают системы отопления теплиц примерно по тому же принципу, что и сети жилых зданий.

Какое оборудование может использоваться в теплицах

Обуславливается выбор конкретного типа системы отопления для теплицы в первую очередь ее размерами. Водяные и воздушные сети с котлами, к примеру, монтируются, конечно же, только в значительных по площади производственных сооружениях этого типа.

Небольшие частные теплицы чаще всего отапливаются электрическими или газовыми обогревателями.

При этом в первом случае могут использоваться приборы как конвекторного типа, так и инфракрасные. Второй тип обогревателей для таких сооружений считается более предпочтительным. Инфракрасное излучение имеет ту же природу, что и солнечный свет.

Иногда в теплицах, обустраиваемых на загородных участках, может устанавливаться и огневоздушное отопительное оборудование — то есть небольшие печи. В данном случае обогрев производится или с использованием дров, или же угля.

Вместо заключения

Подразделяться сети, отвечающие за обогрев зданий, таким образом, могут по таким признакам, как вид используемого оборудования, способы разводки контура, тип теплоносителя, назначение. О классификации систем отопления представление иметь стоит в том числе и владельцам загородных жилых домов. В случае необходимости это поможет выбрать для своего дома наиболее оптимальный вариант сети.

Современные системы теплоснабжения (стр. 1 из 4)

Вид отопления, при котором тепло передается благодаря перемешиванию объемов горячего и холодного воздуха. К недостаткам конвективного отопления относится большой перепад температур в помещении (высокая температура воздуха наверху и низкая внизу) и невозможность вентиляции помещения без потерь тепловой энергии

Лучистое отопление

Вид отопления, когда тепло передается в основном излучением и в меньшей степени — конвекцией. Приборы для отопления размещаются непосредственно под или над обогреваемой зоной (вмонтированы в пол или потолок, также могут крепиться на стены или под потолком)[3][4].

Водяное отопление

Это замкнутая система отопления, в качестве теплоносителя в ней используется вода или антифриз. Вода подается по трубам от источника тепла к радиаторам отопления. В централизованных системах температура регулируется на тепловом пункте, а в индивидуальных – автоматически (с помощью термостатов) или вручную (кранами).

Виды водяных систем

В зависимости от типа присоединения нагревательных приборов системы делят на:

  • однотрубные,
  • двухтрубные,
  • бифилярные (двухтопочные).

По способу разводки различают:

  • верхнюю;
  • нижнюю;
  • вертикальную;
  • горизонтальную системы отопления.

В однотрубных системах подключение отопительных приборов последовательное. Чтобы компенсировать потерю тепла, которая происходит при последовательном прохождении воды из одного радиатора в другой, применяют отопительные приборы с различной поверхностью теплоотдачи. Например, могут быть использованы чугунные батареи с большим количеством секций. В двухтрубных применяют схему параллельного подключения, что позволяет устанавливать одинаковые радиаторы.

Гидравлический режим может быть постоянным и изменяемым. В бифилярных системах отопительные приборы соединены последовательно, как в однотрубных, но условия теплопередачи радиаторов такие же, как в двухтрубных. В качестве отопительных приборов используются конвекторы, стальные или чугунные радиаторы.

Инновационные технологии регулирования систем отопления

Преимущества и недостатки

Водяной обогрев широко распространен благодаря доступности теплоносителя

Еще одно преимущество – возможность обустроить систему отопления своими руками, что немаловажно для наших соотечественников, привыкших полагаться только на собственные силы. Впрочем, если бюджет позволяет не экономить, проектирование и монтаж отопления лучше доверить специалистам

Это избавит от многих проблем в будущем – протечек, прорывов и т.п. Недостатки – замерзание системы при отключении, длительное время прогрева помещений. Особые требования предъявляют к теплоносителю. Вода в системах должна быть без посторонних примесей, с минимальным содержанием солей.

Для разогрева теплоносителя может использоваться котел любого типа: на твердом, жидком топливе, газе или электричестве. Чаще всего используют газовые котлы, что предполагает подключение к магистрали. Если такой возможности нет, то обычно устанавливают твердотопливные котлы. Они более экономичны, чем конструкции, работающие на электричестве или жидком топливе.

Инновационные технологии регулирования систем отопления

Системы отопления

Система отопления

— это совокупность технических элементов, предназначенных для получения, переноса и передачи во все обогреваемые помещения количества теплоты, необходимого для поддержания температуры на заданном уровне.

Основные конструктивные элементы системы отопления:

  • теплоисточник (теплогенератор при местном или теплообменник при централизованном теплоснабжении) — элемент для получения теплоты;
  • теплопроводы — элемент для переноса теплоты от теплоисточника к отопительным приборам;
  • отопительные приборы — элемент для передачи теплоты в помещение.

Перенос по теплопроводам может осуществляться с помощью жидкой или газообразной рабочей среды. Жидкая (вода или специальная незамерзающая жидкость — антифриз) или газообразная (пар, воздух, продукты сгорания топлива) среда, перемещающаяся в системе отопления, называется теплоносителем.

Современные системы отопления обладают также и функцией поддержания микроклимата, что предусматривает наличие автоматизации и соответствующего усложнения самой системы. При этом гидравлический режим часто меняется в процессе эксплуатации, что отличает такие системы от «классических», которые единожды настраиваются при пуске в работу[5].

Классификация

Системы отопления можно разделить[5]:

  • По типу источника нагрева
    — газовые, геотермальные, дровяные, пиролизные, мазутные, солнечные, угольные, торфяные, пеллетные, электрические (кабельная), отопление с помощью теплового насоса и пр.
    См. Отопительный котёл
  • По типу теплоносителя
    — водяные (жидкостные), воздушные, паровые, комбинированные;
  • По типу применяемых приборов
    — лучистые, конвективно-лучистые, конвективные;
  • По виду циркуляции теплоносителя
    — с естественной и искусственной (механической, с использованием насосов);
  • По радиусу действия
    — местные и центральные;
  • По режиму работы
    — постоянно работающие на протяжении отопительного периода и периодические (в том числе и аккумуляционные) системы отопления.
  • По гидравлическим режимам
    — с постоянным и изменяемым режимом;
  • По ходу движения теплоносителя
    в магистральных трубопроводах — тупиковые и попутные;

Для водяного отопления:

  • По способу разводки
    — с верхней, нижней, комбинированной, горизонтальной, вертикальной;
  • По способу присоединения приборов
    — однотрубные, двухтрубные;

Особенности воздушных систем отопления

Схема воздушного отопления дома.

Самым простым и самым очевидным вариантом обеспечения тепла в доме является организация воздушного отопления какой-либо комнаты частного дома. Она может быть организована и во всем доме полностью. Данные системы предпочтительнее устанавливать в производственных помещениях, которые предназначены для того, чтобы люди в них находились достаточно непродолжительное время. Связано это с тем, что в процессе работы тепловые пушки работают на основе вентиляторов. Принцип работы данных отопительных систем подразумевает использование теплообменника, без которого не обходится практически ни одна современная отопительная система.

Теплый воздух, который генерируется в данных теплообменниках, проходит к вентиляторам, которые время от времени включаются и прогоняют его по всему помещению.

Неудобством использования такой системы в производственном и жилом помещении, является то, что вентиляторы работают практически постоянно и шумно.

Однако данные варианты становятся незаменимыми в частных домах, в которых присутствуют помещения внушительных размеров. Если вам необходимо отопить какой-то зал или же террасу, то тепловая пушка станет самым оптимальным решением: это позволит вам в сравнительно короткие сроки не только согреться, но и обеспечить нужную температуру на весьма приличные промежутки времени.

История и эволюция систем отопления

Воздушное отопление

Основная статья: Воздушное отопление.

Древнеримский гипокауст

Огневоздушное — означает, что нагрев теплоносителя (воздуха) осуществляется с помощью огня.

Первой огневоздушной, да и вообще первой отопительной установкой считается костёр, разведённый внутри жилища.

В Древнем Риме в I веке до н. э. уже существовало развитое отопительное устройство гипокауст, где воздух в помещении получал теплоту от полов, которые нагревались печными дымовыми газами, проходящими в подпольных полостях. Такая система позволяла получать «чистую» теплоту, без контакта человека с продуктами сгорания. Кроме этого, каменный пол, обладая большой тепловой инерцией, долго ещё после потухания огня отдавал теплоту помещению. Гипокауст описывается Марком Витрувием Поллионом в трактате «Об архитектуре». Схожая система, ондоль, появившаяся предположительно в I в. до н. э. — VII в. н. э., используется до сих пор в Корее. Аналогичная система обогреваемого пола известна и в северных районах Китая, где она известна как «дикан» (буквально пол-кан). Впрочем, более распространённый тип китайского кана обогревал лишь широкую лежанку, где люди спали, сидели, сушили вещи и т. д.

Площадка системы ондоль (реконструкция), Южная Корея

Также ещё в Древнем Риме принял свой современный облик камин. Термин и происходит от латинского caminus — открытый очаг. Он устанавливался в центре помещения и максимально окружался теплоаккумулирующими материалами — каменный портал, каменный дымоход, каменная противоложная стена. Таким образом удавалось избежать перегрева во время топки (камень «впитывал» теплоту) и резкого охлаждения после потухания огня (теперь камень «отдавал» тепло). Камин также осуществлял вентиляцию, создавая тягу в дымоходе.

А в средней Европе, судя по археологическим раскопкам, и в IX веке жилища отапливались печами-каменками и курными печами. Печь-каменка представляла собой очаг, сложенный из булыжников и валунов, курная печь — вырытую в земле яму с глиняным сводом. Это было уже большим шагом после костра — такая печь аккумулировала теплоту и продолжала отдавать её долгое время после прогорания топлива, что позволяло тратить меньше дров и сил. Но всё равно эти печи ещё топились «по чёрному» — продукты сгорания выходили сперва прямо в жилище и уже после в атмосферу через специальное отверстие в потолке, а то и вовсе через дверь. В XV веке существовали печи с дымоходными трубами, тогда деревянными — «дымницами»[6][7].

К этому времени в Европе система гипокауста была практически утрачена (за исключением Испании, где изменённая версия, называемая «глорией», существовала до начала XX века), а потому появление огневоздушной системы, называемой «русской системой», произвело небольшую революцию. Устройство отопления было такое: холодный воздух через воздухозаборную шахту подводился к установленной на первом или цокольном этаже печи, где, касаясь её раскалённой поверхности, нагревался, а после по горизонтальным и вертикальным кирпичным воздухораспределяющим каналам подводился в обогреваемые помещения. Оттуда через вытяжные каналы отдавший теплоту воздух выводился обратно в атмосферу. Циркуляция воздуха была естественной, за счёт разности плотностей горячего и холодного.

Такая система не только обеспечивала жильё «чистой» теплотой, но и осуществляла вентиляцию. «Русской системой» была оборудована, к примеру, Грановитая палата в Кремле[8].

Печи в XV—XVIII веках были глиняные, кирпичные или даже изразцовые, что было большой роскошью — изразцовую печь можно было встретить только в богато украшенных дворцовых помещениях и изредка у зажиточных горожан. Также на Тульском заводе выпускались чугунные и стальные нетеплоёмкие печи. В 1709 году по указу Петра первого были созданы первые десять «шведских» печей с более дешёвыми изразцами (синяя роспись по гладкому белому основанию). «Шведская» печь популярна и до сих пор, бывает различных конструкций — К. Я. Буслаева, Г. Резника, В. А. Потапова, но по сути представляет собой печь с оснащённой вытяжкой варочной камерой в «теле» печи и «кухонной плитой» на ней. В 1736 году в Петербурге были широко распространены «дровосберегающие» печи, оснащённые горизонтальным змеевиком дымохода, в 1742 её уже успешно вытесняла печь с «колодцами» — вертикальным змеевиком.

Российский инженер и архитектор Н. А. Львов в 1795 году издал первую оригинальную русскую работу по отоплению, свою книгу «Русская пиростатика». В издании Львов с резкой критикой отозвался о модном увлечении иностранными фигурными печами, которые были крайне неэффективны, а также представил изобретённые им усовершенствования отопительных установок, а также основы конструирования и расчёты систем огневоздушного отопления.

Схема «русской» системы отопления

В это время всё больше распространялись многоэтажные здания, поэтому появляется тенденция к централизованному отоплению. Тут и пригодится «русская система», выполняемая раньше в основном для двухэтажных зданий. Тогда же в 1799 году Николай Львов опубликовал свою вторую книгу «Русская пиростатика, или употребленiе испытанныхъ каминовъ и печей», где есть раздел «О духовыхъ печахъ верхнiя или соседственные комнаты нагревающiхъ». Там он предложил конструкцию наподобие калорифера, но малоэффективную.

В 1821 году в Вене была издана книга немецкого профессора Мейснера «Руководство к отоплению зданий гретым воздухом» — также сделавшая значительный вклад в развитие огневоздушного отопления[9].

В 1820-х годах быстро приобрели и потеряли популярность т. н. печи Уттермарка. Оригинальная печь Ивана[10] Уттермарка была круглой и выкладывалась очень плотно особым кирпичом, сделанным по лекалам. Также она имела в своей конструкции изогнутые медные трубы с коленами, проходя через которые, нагревался комнатный воздух[11]. То есть набор деталей был не из общедоступных. Поэтому только упрощённый вариант, где печь была из обычного кирпича и снабжалась металлической «рубашкой», и получил популярность, которая быстро схлынула из-за плохих санитарно-гигиенических характеристик (при контакте с раскалённой печью воздушная пыль пригорала, издавая неприятный запах).

Изразец голландской печи XVIII века

В 1835 году Николай Аммосов, обобщив идеи Львова и Мейснера, представил первый в мире эффективный калорифер — свою систему «пневматического» отопления, позже и названную «аммосовской печью». Работала система вполне аналогично «русской» — нагретый печью воздух под действием разности плотностей поднимался по «жаровым» металлическим каналам в парадные залы и жилые комнаты. Представление печи было не простое — её впервые установили в помещениях Императорской Академии художеств, где система хорошо себя показала. В 1838 году, после трёхдневного пожара в Зимнем дворце, печное отопление заменили на аммосовские пневмопечи[12]. К 1841 году «аммосовские печи» были установлены в зданиях Эрмитажа, Придворном Манеже — в общей сложности в 100 крупных зданиях в Санкт-Петербурге и других крупных городах России насчитывалось в общей сложности свыше 420 «больших и малых пневматических печей».

И только теперь стали заметны существенные недостатки. То, что система издавала низкий гул при топке, пересушивала воздух, потрескивала во время грозы, было заметно сразу и терпимо (впрочем, именно поэтому Александр II в 1860-х добавил ей «в помощь» локальные системы водяного отопления[12], но главный недостаток заключался в раскалённых «жаровых» воздуховодах, которые перегревали оказавшиеся рядом стены, уничтожая драгоценные росписи, а пыль на них пригорала, издавая неприятный запах, или, хуже, взлетала и покрывала понемногу сажей стены, картины — словом, весь интерьер[13].

Сам Аммосов же ни в коем случае не соглашался с недостатками своего изобретения и приписывал их «лени и неряшеству истопников»[11].

Водяное отопление

Основная статья: Водяное отопление.
П. Г. Соболевский

В 1777 году французский инженер М. Боннеман изобрёл и применил для обогрева инкубаторов первую водную систему отопления с естественной циркуляцией, основные принципы и инженерные решения которой нашли применение в отоплении жилищ тогда и применяются до сих пор.

В 1834 первой в России системой водяного отопления с естественной циркуляцией стала система горного инженера, профессора П. Г. Соболевского. В 1875 году появилась первая не только в России, но и в Западной Европе квартира с отдельной системой водяного отопления с использованием плоских отопительных приборов, сделанных в виде пилястр. Подогрев воды происходил в небольшом нагревателе, установленном в кухонном очаге.

Паровое отопление

Основная статья: Паровое отопление

Отопление радием: камин XXI века. Французская карточка 1910 года

Грядущий XIX век дал широкое распространение водяным и паровым системам отопления. Собственно, толчок паровым системам отопления дало повсеместные применение паровых машин. Промышленные помещения были велики, и отапливать их было сложно, так что отработанный пар пришёлся кстати.

В 1802 году в Российской империи впервые появились статьи о возможности отопления паром, а в 1816 г. в Петербурге уже существовала теплица, отапливаемая таким способом.

Одна из крупнейших в мире систем центрального парового отопления была создана в Нью-Йорке в 1882 году и функционирует по сей день[14].

XX век дал начало системам отопления с принудительной циркуляцией, осуществляемой с помощью насосов. Это осуществилось с промышленным выпуском электродвигателей[7].

Отопление с начала XX века

К 1917 году в России многие доходные дома, в основном элитные, оснащались системами водяного и парового отопления. Подача тепла в дом осуществлялась от котельной, расположенной в подвале или пристройке. Судьба одного из таких домов после революции отражена в рассказе Михаила Булгакова «№ 13. Дом Эльпит-Рабкоммуна». В то же время, значительная часть городских зданий и все индивидуальные дома в городах, селах и деревнях отапливались печами на дровах или иных местных видах топлива.

Широкое внедрение систем центрального отопления началось в эпоху индустриализации СССР и сопутствующей ей урбанизации. В это время формируются основные черты систем центрального отопления, которые действуют в России по настоящее время. При вновь возводимых промышленных предприятиях строятся жилые районы («соцгородки») с многоквартирными домами, оснащенными радиаторами водяного отопления. Наиболее эффективным вариантом было признано центральное отопление от теплоэлектроцентралей (ТЭЦ), при котором реализуется совместная выработка тепла и электроэнергии (когенерация). Распространенными видами топлива в то время были каменный и бурый уголь, торф, мазут и дрова. Центральное отопление позволяло повысить эффективность использования топлива, улучшить экологическую обстановку в городах и избавить население от заботы об отоплении жилищ.

К началу 1950-х годов большинство сталинских домов были оснащены системами центрального водяного отопления, которые подключались к котельным промышленных предприятий, ТЭЦ или небольшим районным котельным. При невозможности подключения к центральному отоплению отдельные дома имели собственные котельные, а некоторые малоэтажные дома проектировались с вариантом печного отопления.

Окончательное внедрение центрального отопления многоквартирных домов произошло с началом массового жилищного строительства хрущёвок. Наряду с подключением домов к ТЭЦ и котельным предприятий, в новых жилых массивах возводились районные котельные. С середины 1960-х по начало 1990-х развитие систем отопления в СССР шло в направлении дальнейшей централизации. Небольшие котельные закрывались, а дома подключались к крупным котельным и ТЭЦ. Проводились закольцовывание систем отопления и внедрение закрытой системы теплоснабжения с тепловыми пунктами.

С начала 1960-х котельные и ТЭЦ с местных видов топлива массово переходят на более удобное и экологичное — магистральный природный газ. С ходом газификации населенных пунктов индивидуальные жилые дома в городах и сельской местности также начинают переходить на водяное отопление с использованием газовых котлов. Этот процесс продолжается и сегодня.

В 1980-е планировалось внедрение отопления с использованием атомной энергии: атомные теплоснабжающие станции (АСТ) в Воронеже и Горьком, атомные теплоэлектроцентрали (АТЭЦ) в Харькове и Одессе. Однако после Чернобыльской аварии все проекты были остановлены.

После распада СССР, наряду с развитием центрального отопления, происходит и иной процесс — распространение местного отопления. Этому способствуют дешевизна и распространенность магистрального природного газа, появление недорогих автоматических газовых котлов и нестабильное функционирование систем центрального отопления. Во вновь возводимых многоквартирных жилых домах применяются домовые котельные, устанавливаемые на крыше или в пристройке. В домах малой и средней этажности также применяются поквартирные системы водяного отопления с помощью настенных газовых котлов.

Видео. Энергоэффективные системы отопления

С тотальным повышением стоимости отопления жилых и подсобных помещений новые технологии обеспечения обогрева в домах всё больше интересуют не только профессионалов, но и обычных людей. Стандартные газовые, угольные или электрические системы постепенно отходят в прошлое, стремительно устаревая.

Инновационные технологии регулирования систем отопления

Выбор новых отопительных систем очень большой: существуют комплексы, которые монтируются непосредственно во время строительства дома, есть те, что можно установить во время реконструкции, а некоторые используются как добавочный отопительный ресурс к уже имеющейся основной конструкции, снижая на неё нагрузку.

Примечания

  1. Отопление // Большой энциклопедический словарь / Гл. ред. А. М. Прохоров. — 1-е изд. — М. : Большая российская энциклопедия, 1991. — ISBN 5-85270-160-2.
  2. Отопление // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  3. Шипилов В. Н.
    К методике расчётов лучистого отопления помещений // Вестник Кыргызского национального аграрного университета им. К.И. Скрябина : журнал. — 2020. — № 4(40). — С. 163—169. — ISSN 1694-6286.
  4. ГОСТ Р 56778-2015 Системы передачи тепла для отопления помещений. Методика расчета энергопотребления и эффективности. — Электронный фонд правовой и нормативно-технической документации справочных систем «Кодекс» и «Техэксперт»: docs.cntd.ru.
  5. 12Зайцев О. Н., Любарец А. П.
    Проектирование систем водяного отопления. — Вена — Киев — Одесса, 2008. — С. 8. — 200 с.
  6. Белоусов В. В.
    Отопление и вентиляция, ч. 1 Отопление. — Москва : Издательство литературы по строительству, 1967. — С. 5—6. — 280 с.
  7. 12Андреевский А. К.
    Отопление. — Минск : Высшая школа, 1982. — С. 5—6. — 364 с.
  8. Каменев П. Н.
    Отопление и вентиляция. Часть 1. Отопление. — Москва : Стройиздат, 1975. — С. 320.
  9. Виноградов В. П.
    Физические принципы устройства приборов отопления. — 1927.
  10. Леонид Большаков
    Комментарий к дневнику Т. Шевченко. — Оренбург: Ин-т Т. Шевченко, 1993. — 108 с., ил. — с. 54.
  11. 12Голиков Н.
    В ТОПКУ. Теплоснабжение Москвы веками обогревало предприимчивых людей // На Варшавке. Чертаново северное. Районная газета ЮАО. : интернет-газета. — 2010. — Сентябрь (№ 9 (156)). Архивировано 18 февраля 2012 года.
  12. 12
    Санкт-Петербургские ведомости — Наследие — Печи, очаги, камины (рус.). spbvedomosti.ru (22 января 2011). Архивировано 18 февраля 2012 года.
  13. История развития теплоснабжения и теплофикации в России. Глава «Русская отопительная техника» (рус.). rosteplo.ru (21 января 2011). Архивировано 18 февраля 2012 года.
  14. Melanie Burford and Greg Moyer
    . A City Shaped by Steam (англ.),
    The New York Times
    (24 May 2015). Проверено 4 декабря 2020.

Воздушное отопление

Теплоноситель – нагретый воздух. Источником его нагрева может служить пар, горячая вода, тепло от сгорания, например, угля, электрический ток.

Читайте здесь — Какой выбрать диван — обзор лучших моделей. Выбор формы, механизма трансформации, наполнителя, обивки. 80 фото диванов в интерьере

В воздухоподогревателе происходит нагрев воздуха. Затем он поступает в комнаты по воздуховоду.

Посмотрите еще здесь!
  • Как сделать самодельный металлоискатель — лучшие схемы, инструкция. Обзор проверенных вариантов по созданию простого металлоискателя своими руками

  • Как выбрать стиральную машину: советы профессионалов, основные тонкости выбора надежной и качественной машинки. Виды, типы, программы и функции

  • Самодельные фонарики своими руками: пошаговая инструкция как сделать красивый и эффективный фонарь (110 фото)

  • отсутствие сложностей с теплоносителем;
  • возможность сопутствующего увлажнения воздуха;
  • высокая эффективность;
  • быстрый прогрев системы.

  • дороговизна установки;
  • генератор занимает значительное пространство;
  • невысокая теплоотдача.

Лишь 30% коттеджей отапливаются этим способом. Это обусловлено, в первую очередь, высокой стоимостью монтажа. Также стоит помнить, что содержать такую систему тоже недёшево.

Система отопления частного дома

Автономность отопления дает собственнику жилья массу преимуществ:

  • во-первых, это независимость от графика отопления, которого придерживаются централизованные сети. Вы можете топить свой дом тогда, когда захотите, даже летом, если стало прохладно или в дождливую погоду появилось ощущение сырости;
  • во-вторых, это возможность выбора любой температуры воздуха. Владельцам домов с индивидуальным отоплением не приходится досадовать по поводу того, что «опять плохо топят» или, наоборот, что «в квартире жара, как в Африке». Они просто регулируют температурный режим по мере необходимости или предоставляют заботу об этом автоматике;
  • в-третьих, в частных домах легко организовать комбинированное отопление с несколькими генераторами тепла, работающими на разных видах топлива (газ, дрова, электричество). Это очень удобные системы отопления дачного дома или постоянного жилища, так как при отсутствии одного из видов топлива всегда можно получить тепло от другого источника.

Минусом индивидуального отопления считается необходимость постоянно следить за работой печки или котла, если они работают на твердом топливе. Однако сейчас эта задача решается покупкой оборудования с автоматической загрузкой топлива и электронным блоком управления. Автоматический котел может быть подключен к системе «Умный дом» или получать команды от владельца по смартфону – в любом варианте хлопот будет значительно меньше. С другой стороны, печи с ручным управлением и функцией длительного тления также не обременяют лишними заботами своих владельцев, так как позволяют поддерживать тепло в течение нескольких часов без дополнительной закладки топлива. Поэтому печная система отопления в частном доме по-прежнему сохраняет свою популярность.

Если есть желание организовать у себя дома водяное отопление и при этом сэкономить на электричестве, то можно обратить внимание на вариант с естественной циркуляцией. Источником тепла в этом случае могут быть любые энергонезависимые котлы – газовые или твердотопливные. При монтаже необходимо правильно выбрать местоположение котла – чем больше разница по высоте между котлом, радиаторами и расширительным баком, тем активнее будет происходить циркуляция теплоносителя. Для больших коттеджей подойдет закрытая энергозависимая система с циркуляционным насосом и мембранным баком.

Нужна ли подпитка системы отопления? При естественном способе циркуляции используется открытый расширительный бак, из которого вода постоянно испаряется, поэтому здесь не обойтись без её своевременного добавления. Что же касается закрытых систем, то для них подпитка может быть нужна только в случае протечки или при увеличении протяженности трубопроводов и, соответственно, требуемого объема теплоносителя.

Что выбрать – радиаторы или водяные конвекторы? Радиаторы обладают большой площадью поверхности, с которой снимается тепло, поэтому их эффективность очень высока. Если не устраивает внешний вид стандартных приборов, то в продаже имеется большой выбор дизайнерских моделей, оформленных в современном или традиционном стилях.

Конвекторы привлекают тем, что они могут быть спрятаны в нишах, устроенных в полу, а также тем, что циркуляция теплого воздуха в этом случае происходит на всем пространстве комнаты от пола до потолка. Однако для моделей с принудительной конвекцией требуется электричество, а модели без вентиляторов будут малоэффективны в комнатах с высокими потолками.

Система отопления частного дома, схема которой включает водяные «теплые» полы, будет несколько сложнее, чем та, в которой используют только радиаторы или конвекторы. Однако «теплый пол» создает исключительный комфорт и особенно нужен в детских комнатах, а также в тех помещениях, которые расположены на первом этаже здания.

Классификация систем теплоснабжения

В наших широтах климат умеренный, так что все времена года выражены очень ярко. Лето теплое, весна и осень прохладные, а вот зима холодная. И именно зимой (и осенью, да и в принципе, весной) возникает неизбежная потребность в таком явлении как теплоснабжение.

Теплоснабжение – это комплекс мероприятий для выработки тепла, его транспортировки и распределения по зданиям и сооружениям с целью обеспечения теплового комфорта потребителей, находящихся в них.

Классификация систем теплоснабжения

В состав любой системы теплоснабжения входят три основных элемента:

  1. теплоисточник. Это может быть ТЭЦ или котельная (централизованная система теплоснабжения), либо просто котел, расположенный в отдельном здании (местная система теплоснабжения).
  2. система трубопроводов, по которым происходит транспортировка тепловой энергии (тепловые сети).
  3. потребители тепла (радиаторы отопления и калориферы).

Системы теплоснабжения бывают:

В централизованных системах теплоснабжения теплоисточником служит либо ТЭЦ, либо мощная котельная, которая поставляет нагретый теплоноситель для группы потребителей, будь то квартал, микрорайон или даже весь город. При такой системе горячая вода от теплоисточника транспортируется по магистральным тепловым сетям. От магистральных сетей горячая вода подается в центральные тепловые пункты (ЦТП) или индивидуальные (ИТП). А уже от ЦТП тепло по квартальным сетям поступает непосредственно в здания и сооружения потребителей.

В местных системах теплоснабжения теплоисточник и потребители находятся в одном здании. Например, в отдельном жилом доме находится автономная котельная, которая нагревает воду только для удовлетворения нужд жителей данного дома в отоплении и горячей воде.

Основным недостатком централизованных систем теплоснабжения является большая протяженность тепловых сетей, а, следовательно, и громадные потери тепла при транспортировке. Именно поэтому сейчас все больше потребителей отказываются от централизованных систем в пользу местных. Все большую популярность набирают автономные котельные, которые, к тому же, намного экономичнее своих крупных аналогов.

Системы теплоснабжения классифицируют также по способу подключения системы отопления. Они подразделяются на следующие виды:

зависимая прямоточная. Допускается в том случае, если температура горячей воды в системе отопления равна температуре в тепловой сети. Регулирование такой системы отопления определяется регулированием наружной тепловой сети.

зависимая со смешением воды. Применяется в том случае, когда температура горячей воды в системе отопления должна быть меньше, чем в тепловой сети. Требуемая температура горячей воды в системе отопления достигается путем смешивания обратной воды с горячей водой тепловой сети. Смешение осуществляется с помощью смесительного насоса, который устанавливается на перемычке между прямой и обратной линиями.

независимая. Отличие данной схемы в том, что в ней вместо водогрейного котла используется теплообменник, обогреваемый так называемой первичной водой из тепловой сети. Нагреваемый теплоноситель циркулирует по маршруту «теплообменник-нагревательные приборы-теплообменник», греющая вода же после прохождения через теплообменник охлаждается и уходит в обратный трубопровод наружных тепловых сетей.

Так как среди потребителей сейчас идет все больший отказ от больших мощностей и централизованного теплоснабжения, то нужно рассмотреть и случай с индивидуальной котельной. В индивидуальной отопительной котельной для одного здания вода с помощью насоса циркулирует по контуру, который состоит из водогрейного котла, трубопроводов прямой сетевой воды, нагревательных приборов и трубопроводов обратной воды. В схему включается расширительный бак, который служит для поддержки в системе определенного статического давления, для компенсации объема воды при изменении температуры, а также и для удаления воздуха из системы.

Системы теплоснабжения также классифицируют и по способу присоединения системы горячего водоснабжения. Они подразделяются на два вида:

В закрытых системах холодная питьевая вода из водопровода нагревается прямой сетевой водой от теплоисточника, а только потом поступает к потребителю. Нагревающий теплоноситель и горячая вода разделены между собой. То есть можно сказать так: горячая вода из крана будет соответствовать по качеству холодной воде из водопровода.

В открытых же системах потребитель использует горячую воду, которая поступает непосредственно из централизованной системы теплоснабжения. То есть получается, что горячая вода из крана будет такого же качества, что и вода внутри радиаторов. Открытой данная схема называется потому, что к потребителю вода поступает через открытые краны тепловой сети. В многоквартирных жилых домах используется именно открытая схема ГВС.

Источник https://listarovivan09.ru/sestemy-otoplenija-i-vodosnabzhenija/sistemy-otoplenija-i-ih-vidy.html

Источник https://otoplenie.site/sistemy-otopleniya/klassifikatsiya-sistem-otopleniya.html

Источник https://teplores.ru/montazh-i-remont/kombinirovannye-sistemy-teplosnabzheniya.html

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: